Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Front Microbiol ; 15: 1348063, 2024.
Article in English | MEDLINE | ID: mdl-38476938

ABSTRACT

Introduction: This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods: The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results: The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion: This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.

2.
BMC Vet Res ; 18(1): 437, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36514049

ABSTRACT

BACKGROUND: Salmonella enterica, serovar Enteritidis (SE) is a food-borne pathogen, which can cause great threat to human health through consumption of the contaminated poultry products. Chicken is the main host of SE. The mRNA and microRNA (miRNA) expression profiles were analyzed on cecum of Shouguang chicken via next-generation sequencing and bioinformatics approaches. The treated group was inoculated SE, and the control group was inoculated with phosphate buffer saline (PBS). RESULTS: There were 1760 differentially expressed mRNAs in the SE-infected group, of which 1046 were up-regulated mRNA, and 714 were down-regulated mRNA. In addition, a total of 821 miRNAs were identified, and 174 miRNAs were differentially expressed, of which 100 were up-regulated and 74 were down-regulated. Functional enrichment of differentially expressed mRNAs was similar to miRNA target genes. The functional analysis results of differentially expressed mRNAs and miRNAs were performed. Immune-related processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched by up-regulated mRNA. The down-regulated mRNAs were enriched in tissue development and metabolic-related KEGG pathways. The functional analysis of up-regulated miRNA target genes was similar to the down-regulated mRNAs. The down-regulated miRNA target genes were enriched in metabolic-related GO (Gene Ontology) -BP (Biological process) terms and KEGG pathways. The overlap of the up-regulated mRNA and the up-regulated miRNA target genes (class I) was 325, and the overlap of the down-regulated miRNA target genes (class II) was 169. The class I enriched in the immune-related GO-BP terms and KEGG pathways. The class II mainly enriched in metabolic-related GO-BP terms and KEGG pathways. Then we detected the expression of mRNA and miRNA through qRT-PCR. The results shown that the expression of HHIP, PGM1, HTR2B, ITGB5, RELN, SFRP1, TCF7L2, SCNN1A, NEK7, miR-20b-5p, miR-1662, miR-15a, miR-16-1-3p was significantly different between two groups. Dual-luciferase reporter assay was used to detect the relationship between miR-20b-5p and SCNN1A. The result indicated that miR-20b-5p regulate immune or metabolic responses after SE infection in Shouguang chickens by directly targeting SCNN1A. CONCLUSIONS: The findings here contribute to the further analysis of the mechanism of mRNA and miRNA defense against SE infection, and provide a theoretical foundation for the molecular disease-resistant breeding of chickens.


Subject(s)
Chickens , MicroRNAs , Animals , Cecum/metabolism , Chickens/genetics , Gene Expression Profiling/veterinary , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Salmonella enteritidis/genetics
3.
Front Cell Infect Microbiol ; 12: 1037607, 2022.
Article in English | MEDLINE | ID: mdl-36389161

ABSTRACT

Salmonella enterica serovar Enteritidis is the most prevalent serotype that causes human infections worldwide. Consumption of S. Enteritidis-contaminated animal foods is a major source of human infections; however, eradicating bacteria from animals remains difficult. Therefore, it is necessary to develop new measures to prevent and control salmonellosis. Here, we used the outer-membrane vesicles (OMVs) of S. Enteritidis and assessed their protective efficacy and immune response in mice. Deletion of tolR in S. Enteritidis increased the production and size of OMVs compared to those in the wild type (WT) and ΔrfaQ strains. Intramuscular immunization with OMVs conferred greater protection than intraperitoneal and intranasal immunization. Moreover, OMVs extracted from both WT and ΔtolR strains provided an 83.3% protective rate in mice challenged with S. Enteritidis, which was higher than that provided by OMVs extracted from the ΔrfaQ strain. However, compared with OMVs from the ΔtolR strain, OMVs from WT and ΔrfaQ strains rapidly eradicated S. Enteritidis colonizing the liver, spleen, ileum, and cecum of BALB/c mice after immunization. Immunization with OMVs from each of the three strains induced humoral immune responses and showed no side effects on the growth of mice. Our study revealed that OMVs from various S. Enteritidis strains could be developed for use as subunit vaccine candidates against nontyphoidal Salmonella infections in mammals.


Subject(s)
Salmonella Infections, Animal , Salmonella Vaccines , Mice , Humans , Animals , Salmonella enteritidis , Salmonella Infections, Animal/microbiology , Mice, Inbred BALB C , Immunity, Humoral , Mammals
4.
Int J Food Microbiol ; 373: 109699, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35569192

ABSTRACT

Microbial contamination of food contact surfaces in food processing industries is a significant health hazard. Evaluating the efficacy of sanitizing agents used during food processing is essential to ensure public health and safety. This study describes an optical screening method using an oCelloScope to quantify the number of surviving bacterial cells, expressed as microbial log reduction (MLR), after antimicrobial treatment. We tested the efficacy of two sanitizing agents, sodium hypochlorite and benzalkonium chloride, against desiccated cells of three pathogens, S. Enteritidis, E. coli O157: H7, and L. monocytogenes that are of concern on food processing surfaces. Stainless steel slides were used to mimic commercial food processing surfaces. Bacterial cells were desiccated at 75% relative humidity (RH) before antimicrobial treatment on stainless steel surfaces, and survivor levels were analyzed via plate counts to calculate MLR. These were compared to MLR values generated using the oCelloScope. For analysis of MLR using the oCelloScope, cells were desiccated at 75% RH on polystyrene microtiter plates, treated with antimicrobials, and surviving cell numbers were analyzed. Our results show that MLR values of treated desiccated cells calculated using the BCA algorithm of the oCelloScope were comparable to the values generated using the traditional plate count assay for the same concentration and treatment duration of the antimicrobials against all the tested pathogens. MLR could not be calculated for a non-lytic antimicrobial (curcumin and UV-A irradiation) against E. coli O157:H7, however, modified growth curves demonstrated an antimicrobial effect of curcumin and irradiation treatment. The results indicate that this method can be used for rapid screening of MLR of lytic antimicrobial compounds. Quantification of MLR using the oCelloScope is an effective tool to rapidly identify appropriate antimicrobial treatments and can be used to study novel antimicrobial compounds in the future.


Subject(s)
Anti-Infective Agents , Curcumin , Escherichia coli O157 , Listeria monocytogenes , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Curcumin/pharmacology , Food Microbiology , Stainless Steel/pharmacology
6.
Animals (Basel) ; 13(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36611688

ABSTRACT

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a foodborne pathogen, which can cause great threats to human health through the consumption of contaminated poultry products. This research combines TMT labeling, HPLC and mass-spectrometry-based phosphoproteomics on cecum of the F1 cross of Guangxi Yao chicken and Jining Bairi chicken. The treated group was inoculated with 0.3 mL inoculum S. Enteritidis, and the control group was inoculated with 0.3 mL phosphate-buffered saline (PBS). A total of 338 differentially phosphorylated modification sites in 243 differentially phosphorylated proteins (DPPs) were chosen for downstream analyses. A total of 213 sites in 146 DPPs were up-regulated and 125 sites in 97 DPPs were down-regulated. Functional analysis was performed for DPPs based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the protein domain. The DPPs were mainly enriched in immune- and metabolic-related GO-BP (biological process) and KEGG pathways. We predicted and classified the subcellular structure and COG/KOG of DPPs. Furthermore, protein-protein interaction network analyses were performed by using multiple algorithms. We identified 71 motifs of the phosphorylated modification sites and selected 18 sites randomly to detect the expression level through parallel reaction monitoring (PRM). S. Enteritidis inoculation caused phosphorylation alteration in immune- and metabolic-related proteins. The invasion of S. Enteritidis may be actualized by inducing cecum cell apoptosis through the endoplasmic reticulum pathway, and chickens could resist the invasion of S. Enteritidis by affecting the function of ECM receptors. The findings herein provide a crucial theoretical foundation to understand the molecular mechanism and epigenetic regulation in response to S. Enteritidis inoculation in chickens.

7.
Front Microbiol ; 12: 779749, 2021.
Article in English | MEDLINE | ID: mdl-34880847

ABSTRACT

Salmonella contamination of eggs and egg shells has been identified as a public health problem worldwide. Here, we reported an outbreak of severe gastrointestinal symptoms caused by Salmonella enterica serovar Enteritidis (S. enteritidis) in China. We evaluated the outbreak by using epidemiological surveys, routine laboratory testing methods, and whole genome sequencing (WGS). This outbreak occurred in a canteen in Beijing, during March 9-11, 2021, 225 of the 324 diners who have eaten at the canteen showed gastrointestinal symptoms. The outbreak had characteristical epidemiological and clinical features. It caused a very high attack rate (69.4%) in a short incubation time. All patients developed diarrhea and high fever, accompanied by abdominal pain (62.3%), nausea (50.4%), and vomiting (62.7%). The average frequency of diarrhea was 12.4 times/day, and the highest frequency of diarrhea was as high as 50 times/day. The average fever temperature was 39.4°C, and the highest fever temperature was 42°C. Twenty strains of S. enteritidis were recovered, including 19 from the patients samples, and one from remained egg fried rice. Antibiotic susceptibility test showed that the 20 outbreak strains all had the same resistance pattern. PFGE results demonstrated that all 20 strains bore completely identical bands. Phylogenetic analysis based on WGS revealed that all 20 outbreak strains were tightly clustered together. So the pathogenic source of this food poisoning incident may was contaminated egg fried rice. Resistance gene analysis showed that the outbreak strains are all multi-drug resistant strains. Virulence gene analysis indicated that these outbreak strains carried a large number of virulence genes, including 2 types of Salmonella pathogenicity islands (SPI-1 and SPI-2). Other important virulence genes were also carried by the outbreak strains, such as pefABCD, rck and shdA. And the shdA gene was not in other strains located in the same evolutionary branch as the outbreak strain. We speculated that this is a significant reason for the serious symptoms of gastroenteritis in this outbreak. This outbreak caused by S. enteritidis suggested government should strengthen monitoring of the prevalence of outbreak clone strains, and take measures to mitigate the public health threat posed by contaminated eggs.

8.
Lett Appl Microbiol ; 72(6): 741-749, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33650683

ABSTRACT

In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria-Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although E. coli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, E. coli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that E. coli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.


Subject(s)
Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Salmonella enteritidis/drug effects , Salmonella enteritidis/growth & development , Sodium Chloride/pharmacology , Agar , Colony Count, Microbial , Culture Media/chemistry , Food Microbiology
9.
Animals (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535430

ABSTRACT

One of the main roles in poultry resistance to infections caused by Salmonella is attributed to host immunity and intestinal microbiota. We conducted an experiment that involved challenging Lohmann White laying hens with Salmonella Enteritidis (SE), feeding them a diet supplemented with an EOs-based phytobiotic Intebio®. At 1 and 7 days post-inoculation, the expression profiles of eight genes related to immunity, transport of nutrients in the intestine, and metabolism were examined. Cecal microbiome composition and blood biochemical/immunological indices were also explored and egg production traits recorded. As a result, the SE challenge of laying hens and Intebio® administration had either a suppressive or activating effect on the expression level of the studied genes (e.g., IL6 and BPIFB3), the latter echoing mammalian/human tissue-specific expression. There were also effects of the pathogen challenge and phytobiotic intake on the cecal microbiome profiles and blood biochemical/immunological parameters, including those reflecting the activity of the birds' immune systems (e.g., serum bactericidal activity, ß-lysine content, and immunoglobulin levels). Significant differences between control and experimental subgroups in egg performance traits (i.e., egg weight/number/mass) were also found. The phytobiotic administration suggested a positive effect on the welfare and productivity of poultry.

10.
Front Microbiol ; 12: 773664, 2021.
Article in English | MEDLINE | ID: mdl-35250901

ABSTRACT

This study aimed to determine the effect of enrofloxacin (ENR) on the transfer of the plasmid-mediated quinolone resistance (PMQR) gene qnrS from opportunistic pathogen Escherichia coli (E2) to Salmonella Enteritidis (SE211) and to analyze the resistance characteristics of SE211-qnrS isolates. The plasmid carrying qnrS gene of E2 was sequenced by Oxford Nanopore technology. The plasmid carrying qnrS gene belonged to incompatibility group IncY. In vitro, the transfer experiment of IncY plasmid was performed by the liquid medium conjugation method. The conjugation transfer frequency of the IncY plasmid was 0.008 ± 0.0006 in the absence of ENR, 0.012 ± 0.003 in 1/32 MICENR, 0.01 ± 0.008 in 1/8 MICENR, and 0.03 ± 0.015 (Mean±SD) in 1/2 MICENR, respectively. After inoculation of E. coli E2 and SE211, chickens were treated with different doses of ENR (3.03, 10, and 50 mg/kg b.w.) for 7 days consecutively. To screen the SE211-qnrS strains from intestinal tract of chickens, the resistance genes and susceptibility of isolates were identified. The amount of E. coli E2 and the copy number of qnrS gene in the chicken intestinal tract were determined by colony counting and qPCR, respectively. In vivo, more SE211-qnrS strains were isolated from the treated group compared with the untreated group. SE211-qnrS strains not only obtained IncY plasmid, but also showed similar resistance phenotype as E2. In conclusion, ENR treatment can promote the spread of a IncY-resistance plasmid carrying the qnrS fluoroquinolone-resistance gene in Escherichia coli and the development of drug-resistant bacteria.

11.
Eur J Clin Microbiol Infect Dis ; 40(3): 597-606, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33030625

ABSTRACT

We sought to determine the relative value of conventional molecular methods and whole-genome sequencing (WGS) for subtyping Salmonella enterica serovar Enteritidis recovered from 2000 to 2015 in Tunisia and to investigate the genetic diversity of this serotype. A total of 175 Salmonella Enteritidis isolates were recovered from human, animal, and foodborne outbreak samples. Pulsed-field gel electrophoresis (PFGE), multiple locus variable-number tandem repeat analysis (MLVA), and whole-genome sequencing were performed. Eight pulsotypes were detected for all isolates with PFGE (DI = 0.518). Forty-five Salmonella Enteritidis isolates were selected for the MLVA and WGS techniques. Eighteen MLVA profiles were identified and classified into two major clusters (DI = 0.889). Core genome multilocus typing (cgMLST) analysis revealed 16 profiles (DI = 0.785). Whole-genome analysis indicated 660 single-nucleotide polymorphism (SNP) divergences dividing these isolates into 43 haplotypes (DI = 0.997). The phylogenetic tree supported the classification of Salmonella Enteritidis isolates into two distinct lineages subdivided into five clades and seven subclades. Pairwise SNP differences between the isolates ranged between 302 and 350. We observed about 311 SNP differences between the two foodborne outbreaks, while only less or equal to 4 SNP differences within each outbreak. SNP-based WGS typing showed an excellent discriminatory power comparing with the conventional methods such as PFGE and MLVA. Besides, we demonstrate the added value of WGS as a complementary subtyping method to discriminate outbreak from non-outbreak isolates belonging to common subtypes. It is important to continue the survey of Salmonella Enteritidis lineages in Tunisia using WGS.


Subject(s)
Molecular Typing , Salmonella Infections/microbiology , Salmonella enteritidis/classification , Whole Genome Sequencing , Animals , Electrophoresis, Gel, Pulsed-Field , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Genetic Variation , Humans , Minisatellite Repeats/genetics , Phylogeny , Polymorphism, Single Nucleotide , Salmonella Infections/epidemiology , Salmonella enteritidis/genetics , Salmonella enteritidis/isolation & purification , Serogroup , Tunisia/epidemiology
12.
BMC Genomics ; 21(1): 814, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33225883

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study. RESULTS: There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean reads and 126,782,896 unique reads in the inoculated group. The methylation density in the gene body was higher than that in the upstream and downstream regions of the gene. There were 8946 differentially methylated genes (3639 hypo-methylated genes, 5307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated. CONCLUSIONS: The genome-wide DNA methylation profile in the response to SE inoculation in chicken was analyzed. SE inoculation promoted the DNA methylation in the chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play crucial roles in the methylation regulation of SE inoculation in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animals , Cecum , Chickens/genetics , Epigenesis, Genetic , Epigenome , Humans , Poultry Diseases/genetics , Salmonella Infections, Animal/genetics , Salmonella enteritidis/genetics
13.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2459-2466, 2020 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-33244940

ABSTRACT

Salmonella enterica serovar Enteritidis (SE) is one of the most important zoonotic pathogens that cause enteritis and systemic infection in animals and human. Understanding invasive capacities of SE isolates is of vital importance to elucidate pathogenesis of Salmonella infection. To improve the throughput capacity and repeatability of classical gentamicin protection assay (GPA), a modified PGA was developed by taking high-throughput advantage of 96-well cell plates and multichannel pipettes. In addition, drop plate technique rather than spread plate method was applied in the modified GPA protocol for bacterial enumeration. The modified GPA protocol was evaluated by phenotyping intracellular replication of a high virulent and a low virulent SE isolates, JL228 and LN248, in a phagocytic cell line RAW264.7. The protocol was then applied in invasive phenotype determination of 16 SE strains to non-phagocytes (HT-29) and the intracellular replication of 43 SE strains to phagocytes (RAW264.7). Significant lower intra-group and inter-group coefficient of variations of the modified GPA was observed, implying good repeatability and reproducibility over traditional protocol. Further, replication phenotypes were also correlated with those from direct observation by confocal microscopy. Collectively, the improved GPA protocol had advantages of high throughput capacity, good repeatability and reliability, it was also noticed that the protocol also represented a fast and labor-saving alternative scheme for the invasive phenotype determination of Salmonella Enteritidis, and providing reliable phenotype profiles for Salmonella-host interplay interpretation.


Subject(s)
Salmonella Infections, Animal , Salmonella enteritidis , Animals , Gentamicins/pharmacology , Humans , Phenotype , Reproducibility of Results
14.
J Bacteriol ; 203(1)2020 12 07.
Article in English | MEDLINE | ID: mdl-33106344

ABSTRACT

An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCES Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.


Subject(s)
Bacterial Proteins/physiology , Salmonella Infections/microbiology , Salmonella enteritidis/physiology , Animals , Bacterial Proteins/chemistry , Humans , Mice, Inbred C57BL , Protein Conformation , Salmonella enteritidis/pathogenicity , Stress, Physiological , Virulence
15.
Vaccine ; 38(45): 7094-7099, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32951940

ABSTRACT

Salmonella enterica serovar Enteritidis remains the most prevalent serotype causing human salmonellosis through the consumption of contaminated foods, especially poultry products. The development of a subunit vaccine against S. Enteritidis can not only protect chickens against Salmonella infection in the poultry industry but also cut the transmission sources. In this study, both the expressed recombinant outer membrane protein F (rOmpF) and extracted outer membrane vesicles (OMVs) were developed as subunit vaccines against S. Enteritidis challenge in chickens. Immunization with the subunit vaccine could induce not only antibody production but also strong cell-mediated immune response. Both rOmpF plus QuilA adjuvant and OMVs alone had highly protective efficacy against S. Enteritidis challenge and rapidly decreased the colonization of bacteria in chicken. These findings revealed the potential application of rOmpF and OMVs as subunit vaccines in the poultry industry.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Animals , Chickens , Farms , Humans , Porins , Poultry , Poultry Diseases/prevention & control , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis , Vaccines, Subunit
16.
BMC Vet Res ; 16(1): 257, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711533

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (SE) is one of the food-borne pathogenic bacteria, which affects poultry production and poses severe threat to human health. The correlation of immune system and metabolism in chicken after SE inoculation is important but not clear. In the current study, we identified the expression of immune and energy metabolism related genes using quantitative PCR to evaluate the correlation between immune system and energy metabolism against SE inoculation in Jining Bairi chicken. RESULTS: ATP5G1, ATP5G3 and ND2 were significantly up-regulated at 1 dpi (day post inoculation), and ATP5E, ATP5G1, ATP5G3 were significantly down-regulated at 7 dpi (P < 0.05). IL-8 and IL-1ß were significantly down-regulated at 1 dpi, IL-8 and IL-18 were significantly down-regulated at 3 dpi, IL-8 and BCL10 were significantly up-regulated at 7 dpi (P < 0.05). CONCLUSIONS: These findings indicate that the correlation between immune and energy metabolism related genes gradually change with time points post SE inoculation, from one homeostasis to an opposite homeostasis with 3 dpi as a turning point. These results will pave the foundation for the relationship between immune system and energy metabolism in the response to SE inoculation in chicken.


Subject(s)
Chickens/genetics , Chickens/immunology , Chickens/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/metabolism , Animals , Chickens/microbiology , Energy Metabolism/genetics , Gene Expression Profiling , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/metabolism , Poultry Diseases/microbiology , RNA, Messenger , Real-Time Polymerase Chain Reaction , Salmonella Infections, Animal/genetics , Salmonella enteritidis , Spleen/metabolism , Transcriptome
17.
Microorganisms ; 8(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512951

ABSTRACT

Kefir, a fermented dairy beverage, exhibits antimicrobial activity due to many metabolic products, including bacteriocins, generated by lactic acid bacteria. In this study, the antimicrobial activities of artisanal kefir products from Fusion Tea (A), Britain (B), Ireland (I), Lithuania (L), the Caucuses region (C), and South Korea (K) were investigated against select foodborne pathogens. Listeria monocytogenes CWD 1198, Salmonella enterica serovar Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579 were inhibited by artisanal kefirs made with kefir grains from diverse origins. Kefirs A, B, and I inhibited all bacterial indicator strains examined at varying levels, except Escherichia coli ATCC 12435 (non-pathogenic, negative control). Kefirs K, L, and C inhibited all indicator strains, except S. aureus ATCC 25923 and E. coli ATCC 12435. Bacteriocins present in artisanal kefirs were determined to be the main antimicrobials in all kefirs examined. Kefir-based antimicrobials are being proposed as promising natural biopreservatives as per the results of the study.

18.
Emerg Infect Dis ; 26(4): 789-792, 2020 04.
Article in English | MEDLINE | ID: mdl-32186505

ABSTRACT

In July 2018, an outbreak of 10 cases of Salmonella enterica serovar Enteritidis infection occurred in Shenzhen, China. Outbreak investigation complemented by whole-genome sequencing traced the source to food ordered online. Our investigation highlights the role of online food delivery platforms as a new mode of foodborne disease transmission.


Subject(s)
Salmonella enterica , Salmonella enteritidis , China/epidemiology , Disease Outbreaks , Polymorphism, Single Nucleotide , Salmonella enteritidis/genetics , Whole Genome Sequencing
19.
Microb Pathog ; 142: 104041, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32027972

ABSTRACT

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a facultative intracellular pathogen deploying the type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) to transfer effector proteins into host cells to modify its functions and accomplish intracellular replication. To study the effect of SspH2 on immune response induced by S. Enteritidis, we generated a deletion mutant of the effector gene sspH2 and a plasmid mediated complementary strain in S. Enteritidis C50336. The results of LD50 showed that SspH2 has no obvious effect on the virulence of S. Enteritidis. However, deletion of sspH2 decreased the invasion and intercellular colonization of the bacteria in Caco2 BBE cells. Using bacteriological counts from tissue homogenates the result of colonization in internal organs showed that in spleen and liver tissues, at 3rd and 4th day p.i. there is a significance decreased number of C50336-ΔsspH2 compared to the C50336-WT and C50336-ΔsspH2-psspH2, respectively. The qRT-PCR analysis results of both in vivo and in vitro experiments clearly showed that the mutant strain C50336ΔsspH2 significantly promoted expression of IL-1ß, INF-γ, IL-12, and iNOS cytokines compared to the groups infected with the wild type or complementary strains, while the IL-8 synthesis was decreased in the mutant strain infected group. All of these findings revealed that SspH2 promotes the colonization of S. Enteritidis in host cells, and it is an important anti-inflammatory biased effector in Salmonella.

20.
Chinese Journal of Biotechnology ; (12): 2459-2466, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878502

ABSTRACT

Salmonella enterica serovar Enteritidis (SE) is one of the most important zoonotic pathogens that cause enteritis and systemic infection in animals and human. Understanding invasive capacities of SE isolates is of vital importance to elucidate pathogenesis of Salmonella infection. To improve the throughput capacity and repeatability of classical gentamicin protection assay (GPA), a modified PGA was developed by taking high-throughput advantage of 96-well cell plates and multichannel pipettes. In addition, drop plate technique rather than spread plate method was applied in the modified GPA protocol for bacterial enumeration. The modified GPA protocol was evaluated by phenotyping intracellular replication of a high virulent and a low virulent SE isolates, JL228 and LN248, in a phagocytic cell line RAW264.7. The protocol was then applied in invasive phenotype determination of 16 SE strains to non-phagocytes (HT-29) and the intracellular replication of 43 SE strains to phagocytes (RAW264.7). Significant lower intra-group and inter-group coefficient of variations of the modified GPA was observed, implying good repeatability and reproducibility over traditional protocol. Further, replication phenotypes were also correlated with those from direct observation by confocal microscopy. Collectively, the improved GPA protocol had advantages of high throughput capacity, good repeatability and reliability, it was also noticed that the protocol also represented a fast and labor-saving alternative scheme for the invasive phenotype determination of Salmonella Enteritidis, and providing reliable phenotype profiles for Salmonella-host interplay interpretation.


Subject(s)
Animals , Humans , Gentamicins/pharmacology , Phenotype , Reproducibility of Results , Salmonella Infections, Animal , Salmonella enteritidis
SELECTION OF CITATIONS
SEARCH DETAIL
...